Search results for "Multivariate sign"
showing 5 items of 5 documents
Estimation of brain connectivity through Artificial Neural Networks
2019
Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors. Moreover, the assessment procedure is also affected by the lack of data points. The mathematical solution to these problems is represented by penalized regression methods based on l 1 norm, that can reduce collinearity by means of variable sel…
Sign and rank covariance matrices with applications to multivariate analysis
2002
The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies
2003
We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …
On the Efficiency of Affine Invariant Multivariate Rank Tests
1998
AbstractIn this paper the asymptotic Pitman efficiencies of the affine invariant multivariate analogues of the rank tests based on the generalized median of Oja are considered. Formulae for asymptotic relative efficiencies are found and, under multivariate normal and multivariatetdistributions, relative efficiencies with respect to Hotelling'sT2test are calculated.
Single-trial Connectivity Estimation through the Least Absolute Shrinkage and Selection Operator.
2019
Methods based on the use of multivariate autoregressive models (MVAR) have proved to be an accurate tool for the estimation of functional links between the activity originated in different brain regions. A well-established method for the parameters estimation is the Ordinary Least Square (OLS) approach, followed by an assessment procedure that can be performed by means of Asymptotic Statistic (AS). However, the performances of both procedures are strongly influenced by the number of data samples available, thus limiting the conditions in which brain connectivity can be estimated. The aim of this paper is to introduce and test a regression method based on Least Absolute Shrinkage and Selecti…